Rotating System RS65
Eddy current sensor for the detection of longitudinal defects
First rate products through reliable eddy current testing

Today’s rod, bar and wire industry requires testing procedures that recognize longitudinal surface defects of small depth. The eddy current inspection method suits these needs particularly well, since it shows a high sensitivity to surface defects.

A special eddy current sensor, the rotating system spirally scans the surface of the test material for even the tiniest longitudinal cracks and tears – depending on the surface conditions. Due to its high resolution and transverse movement across the crack (rather than along it), the rotating system finds defects sometimes missed by conventional encircling coils.

- Inspection before and after production
- High sensitivity
- Range of probe types available
- Lift-off compensation between probe and oval test piece
- Robust design for rigorous industrial environment
- Userfriendly operation
- Easy service

Robust, userfriendly, and easy to maintain

The inspection unit consists of a sleeve shaft construction with a robust, industrial spindle bearing, a non-contact signal transmitter and a heavy-duty probe head.

Precise test piece guidance
- Built-in centering
 The solidly-built, 3-roller centering guarantees precise guidance to an accuracy of 0.1 mm. It is located on both sides of the system and is externally adjustable.
- Auxiliary guide sleeves
 More accurate and narrow guidance is required for small diameter material to prevent test material from hitting the sensors. Special guide sleeves attach internally at the infeed and/or outfeed for this purpose.

Convenient service
- The centering unit lifts up and away, allowing frontal access for diameter adjustment, exchange of probes and service.

Emergency-stop safety switch

Adjustment of centering diameter

Testing head
- The probes are mounted onto a fixed cam plate construction. The diameter can be changed quickly and the probes can be replaced easily if needed.

Photo from right to left: Combined offline testing with RS65 rotation system and encircling coil in magnetization unit followed by DC and AC demagnetization units.
The rotating system scans the test piece in a helical pattern. Every time a probe crosses a crack, it generates a defect signal. In doing so, the rotating system produces a great number of consecutive signals that identify the flaw as a crack. The defect signals appear on the screen as they occur. An angular display shows the position of the defect on the circumference of the test piece.

How the rotating system works

Lift-off compensation

The optional lift-off compensation system corrects distorted signals that arise from a varying gap between the probe and test piece. The smaller the gap, the larger the defect signal. If the test pieces are off-center, defects of the same size produce different signal amplitudes, resulting in inaccuracies in the defect evaluation. The lift-off compensation system corrects this effect and ensures reliable test results.

Minimum defect length

The exchangeable probes are well protected and easily replaced. The probe case holds 1 or 2 differential probes and a lift-off probe. Depending on the material to be tested, a range of probe types can be used with the R565:

- **Eddy current probes**
 - Pot probes: 2-channel; track width 4 mm; highly sensitive configuration for finding longitudinal defects
 - Dual core probes: 2- or 4-channel; track width 2 mm
 - T probes: 2- or 4-channel; track width 4 mm

How the rotating system works

The rotating system scans the test piece in a helical pattern. Every time a probe crosses a crack, it generates a defect signal. In doing so, the rotating system produces a great number of consecutive signals that identify the flaw as a crack. The defect signals appear on the screen as they occur. An angular display shows the position of the defect on the circumference of the test piece.

Minimum defect length and production speed

In complete testing, the feed per revolution corresponds exactly to the probe width. In order to be able to definitely detect a defect, it must at least cover one probe track completely (see red defect markings). The minimum defect length MDL in complete surface testing can therefore not be smaller than twice the probe width. In order to be able to definitely detect a defect during a non-complete surface testing, it also must at least cover one probe track completely (see red defect markings). Accordingly, MDL is enlarged to 2x track width plus 1x gap width.

The maximum possible production speed v_{max} for a specific MDL is calculated as follows:

\[
 v_{max} \text{ [m/s]} = \frac{\text{rpm} \times \text{number of probes} \times (\text{track width} + \text{gap})}{60000}
\]

or

\[
 v_{max} \text{ [m/s]} = \frac{\text{rpm} \times \text{number of probes} \times (\text{MDL} - \text{track width})}{60000}
\]

2) non-complete surface testing

- Track width
- Feed per probe rotation in red:
- Minimum defect length (MDL) = 2x track width
- Feed per probe rotation in red:
- MDL = 2x track width + gap

Lift-off compensation

The option for high precision testing
Reliable semi-finished product testing

Production speed and minimum defect length

<table>
<thead>
<tr>
<th>Number of probes / Track width (mm)</th>
<th>RPM</th>
<th>Complete surface testing</th>
<th>Partial surface testing</th>
<th>Minimum defect length in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2/4</td>
<td>3000</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>4/4</td>
<td>3000</td>
<td>0.53</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>6000</td>
<td>1.07</td>
<td>1.8</td>
<td>2</td>
</tr>
</tbody>
</table>

*Throughput for two probes (1 per arm) = Number of probes x minimum defect length (mm) x rpm / 60,000

Technical data RS65

Testing material
- Tubing, pipe, bar, wire, valve spring wire, heading wire
- Ferrous, nonferrous and austenitic metals
- Size range: Ø 5 – 65 mm (3/16–2 1/2")
- Temperature of inspected material: -20°– 70 °C (-4°–160°F)

Weights
- RS65 350 kg (770 lb); control cabinet 18 kg (40 lb);

Eddy current instrument
- EDDYCHEK® 5; EDDYCHEK® 610

Production line
- Continuous production with cut-off
- Continuous production without cut-off (e.g. drawing line)
- Testing of cut lengths (offline)

Defect resolution
- Min. defect length see table – depends on production speed and probe
- Min. defect depth: 0.05 mm (0.0012") – depends on surface conditions

Probes
- 2 or 4 differential probes on two test heads
- Optional lift-off compensation; max. lift-off: 2 mm
- Probe type dependent on throughput and surface

Guidance system/Centering
- Built-in roller guide system
- Bushings for diameters < 30 mm optional

Rotations per minute
- 3000 or 6000 RPM

Motor and power supply
- Asynchron. 4-pole switchable motor with mechanical brake
- 400V, 50/60 Hz, 2.5kVA. Different voltages possible with isolating transformer
- 115/230 V, 0.5 KW, 50/60 Hz

Demagnetization
- Recommended for material with >10 A/cm

PLC
- Signal output for system control automatization available

Dimensions in mm (in)

System configuration

Control box RS65 Rotating system Eddy current tester

© Copyright 2016 by PRÜFTECHNIK AG. ISO 9001:2008 certified. EDDYCHEK® is a registered trademark of PRÜFTECHNIK Dieter Busch AG. No copying or reproduction of this information, in any form whatsoever, may be undertaken without express written permission of PRÜFTECHNIK AG. The information contained in this leaflet is subject to change without further notice due to the PRÜFTECHNIK policy of continuous product development. PRÜFTECHNIK products are the subject of patents granted or pending throughout the world.