Contact us

Please contact the PRUFTECHNIK team for any product or service inquiry.

Contact us

Find us locally

PRUFTECHNIK operates worldwide in over 70 countries.

Find your local contact person.

To your contact person
PRUFTECHNIK Maintenance Technology Service Inc.
4406, Rue Louis-B.-Mayer
QC H7P 0G1 Laval


Predictive maintenance tools for vibration analysis can help prevent machine failure and avoid costly production downtime.
Our vibration analysis tools are used for condition monitoring on rotating equipment to help detect early component wear and damage. Vibration analysis and balancing are integral parts of any condition-based and predictive maintenance program.

Vibration Analysis and field balancing FAQ

Open All

What is vibration analysis?

Vibration analysis is essential for making sense of the high information content of vibration data.

How does vibration analysis work?

Vibration analysis measures machine or component movement (vibration). As the piece moves back and forth (vibrates) from one point to the other point repeatedly (cycles), vibration analysis looks at how rapidly (frequency) how far (amplitude), and at what speed (acceleration) the movement occurs.

What is the importance of vibration analysis?

Vibration analysis can help detect a wide variety of fault conditions, including the four most common faults: imbalance, misalignment, looseness, and bearing damage.

What are the benefits of adding vibration analysis tools and field balancing tools to your preventive maintenance strategies?

Vibration analysis tools open the door to predictive maintenance (PdM) strategies. PdM uses data collected by wireless remote condition monitoring sensors to analyze equipment condition and helps maintenance professionals predict when maintenance should be performed.

What are Vibration Analyzers?

Technicians use vibration analyzers to measure, store, and analyze the vibrations produced by industrial equipment or installations.

Rotating machines – like compressors, pumps, and fans – all vibrate while in operation. Every machine produces its own, baseline level of vibration, or vibration “signature.”

Changes in vibration levels or vibration frequency can mean that your asset is developing a new defect. Over time, excessive vibration can damage machinery and create dangerous conditions on your floor. But changes in vibration patterns can also indicate underlying issues like misalignment, imbalance, and bearing faults.

Vibration analyzers measure changes in vibration frequency, displacement, and acceleration. They store vibration data so that you can easily spot patterns and changes over time.

Some vibration analyzers can also use vibration data to diagnose problems in the field. In many cases, good analyzers can also guide technicians through the process of the machine fault.

How Do Vibration Analyzers Work?

Vibration analyzers are complex tools. They’re both measuring and analysis tools, allowing them to both gather data and analyze it.

Data Collection

Vibration analyzers use a built-in piezoelectric accelerometer to measure vibration levels on industrial equipment, in buildings, on bridges, or on other installations.

The accelerometer captures vibration data and converts into an electrical signal. Depending on the tool, it may record that data as a time waveform or an FFT. You’ll see the data displayed on the vibration analyzer’s screen.

Depending on the tool, it may also make the data available remotely, so that your teams can access it on their smartphones or tablets when they’re off-site.

Data Analysis

Modern vibration analyzers don’t just collect and organize data, though. They take the data and analyze it on-screen, so that technicians can see exactly where the problem is and how to fix it.

In some cases, the tools color-code the key data and create a step-by-step guide to correcting machine faults.

For example, if a particular asset is unbalanced, a high-quality vibration analyzer can provide detailed instructions on fixing the imbalance. Once the repair is done, the tool can also check the new measurements to verify that the technician has, in fact, repaired the problem correctly.

Why Are Vibration Analyzers Important?

Many operations today are working with a limited maintenance force. At the same time, the typical plant is trying to follow a tight production schedule, with no room for downtime or drops in productivity.

Vibration analyzers can make sure that your assets stay up and running for as long as possible. By catching machine faults early, they ensure that you avoid unnecessary downtime. You also avoid excess energy consumption and slowdowns that come from unbalanced or misaligned equipment.

The earlier you identify defects, the easier it is to schedule repairs at convenient times. And of course, the sooner you address machine problems, the lower your repair costs will be.

Many plants today don’t have a deep bench of maintenance experts. It’s a good idea to look for tools that can provide guidance and even help train newer employees.

What to Look for in a Vibration Analyzer

The best vibration analyzers are accurate, precise, and easy to use.

Tools like the VibXpert II are intuitive and user-friendly. Even employees with very little technical knowledge can use it right out of the box.

The tool is thorough and leaves nothing up to guesswork. It measures vibration levels in 3 axes – horizontal, vertical, and axial, taking the operator through the steps needed to measure correctly.

If the asset is vibrating excessively, the VibXpert II displays an alert, explaining exactly where the problem lies.

Then, the tool’s display walks the user through a step-by-step process to fix the problem. Once the technicians has corrected the imbalance, or the misalignment, VibXpert II can check again to make sure that the issue is totally resolved.

The result? Potential problems get nipped in the bud, all without bringing your operation to a grinding halt.